Mean field super-Brownian motion

Yaozhong Hu
University of Alberta at Edmonton
jointly with
Michael A. Kouritzin (University of Alberta)
Panqiu Xia (Auburn University) Jiayu Zheng (MSU-BIT University)

18th Workshop on Markov Processes and Rel. Topics BNU and Tianjin University

$$
07 / 30-08 / 02 / 2023
$$

Based on the work
(1) Y. Hu ; M. A. Kouritzin; Panqiu Xia; Jiayu Zheng On mean-field super-Brownian motions.

Ann. Applied Probab. to appear
(2) Y. Hu; Xiong Wang; Panqiu Xia; Jiayu Zheng

Moment asymptotics for super-Brownian motions. Submitted.

Outline

1. Branching mechanism of particles
2. Mean field super-Brownian motion
3. Moment formula
4. Moment bound for super Brownian motion
5. Limit of branching particles

1. Branching mechanism of particles

$n \in \mathbb{N}$ is a rescaling parameter and δ is a smoothing parameter.

1. Start at $t=0$ with K_{n} branching particles (first generation particles) spatially distributed in \mathbb{R} at points $x_{1}, \cdots, x_{K_{n}}$. The initial measure is defined as

$$
X_{0}^{\delta, n}=X_{0}^{\delta, n}=\frac{1}{n} \sum_{i=1}^{K_{n}} \delta_{X_{i}} .
$$

2. Each particle independently moves according to a Brownian motion with an independent lifespan of exponential time with some parameter depending on the environment. At the time of its death the particle produces 0 or 2 off-springs with equal probability.

To describe in more details the branching mechanism we use the collection of all multi-indices

$$
\mathcal{I}=\left\{\alpha=\left(\alpha_{0}, \ldots, \alpha_{N}\right): N \in \mathbb{N}, \alpha_{0} \in \mathbb{N}, \alpha_{i} \in\{1,2\}, 1 \leq i \leq N\right\}
$$

to label all possible particles in the system. Thus by definition of \mathcal{I}, we see that each particle is allowed to generate at most 2 offspring. For example, $\alpha=(3,1)$ means the elder successor of the third particle of the first generation. The particle $\alpha=(3,1)$ does not produce the third generation.

For any $\alpha=\left(\alpha_{0}, \ldots, \alpha_{N}\right)$, we write $\alpha-1=\left(\alpha_{0}, \ldots, \alpha_{N-1}\right)$. Then, $\alpha-1$ is uniquely determined as the mother of particle α and we can define $\alpha-2, \alpha-3, \ldots$ and $\alpha-N=\left(\alpha_{0}\right)$ iteratively.

The initial position of each particle inherits her mother's death position, and its motion can be described by B^{α} before she dies. To be more precise, denote by $\beta^{\delta, n}(\alpha)$ and $\zeta^{\delta, n}(\alpha)$ the birth and death times of the particle $\alpha=\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}\right)$. The notation

$$
\alpha \sim_{n} t \quad \Longleftrightarrow \quad \beta^{\delta, n}(\alpha) \leq t<\zeta^{\delta, n}(\alpha)
$$

means that the particle is still alive at time t. Let $\left\{B_{t}^{\alpha}, \alpha \in \mathcal{I}\right\}$ be a family of independent Brownian motions. During its lifetime, the particle α moves according to

$$
\xi_{t}^{\alpha}=\xi_{\beta^{\delta, n}(\alpha)}^{\alpha-1}+B_{t}^{\alpha}-B_{\beta^{\delta, n}(\alpha)}^{\alpha}, \quad \beta^{\delta, n}(\alpha) \leq t<\zeta^{\delta, n}(\alpha)
$$

which is defined recursively.

The notation

$$
X_{t}^{\delta, n}=\frac{1}{n} \sum_{\alpha \sim_{n} t} \delta_{\xi_{t}^{\alpha}}
$$

the empirical measure of the system where the summation over $\alpha \sim_{n} t$ is among all particles "alive" at time t (to be defined later). We also associate a smoothing random field $Y^{\delta, n}$ on $\mathbb{R}_{+} \times \mathbb{R}$ given by

$$
Y_{t}^{\delta, n}(x)=\left\langle X_{t}^{\delta, n}, p_{\delta}(x-\cdot)\right\rangle=\int_{\mathbb{R}} p_{\delta}(x-y) X_{t}^{\delta, n}(d y)
$$

The lifetime of each particle α is controlled by an independent exponential clock. The parameter of each clock is $n \widetilde{\sigma}_{\delta}^{2}\left(t, \xi_{t}^{\alpha}, \mathbb{P}_{Y_{t}^{\delta, n}}\right)$, where $\widetilde{\sigma}_{\delta}$ is defined by

$$
\begin{equation*}
\tilde{\sigma}_{\delta}(t, x, \Gamma)=\int_{\mathbb{R}} d y p_{\delta}(x-y) \sigma(t, y, \Gamma(y)) \tag{1}
\end{equation*}
$$

with some measurable function $\sigma: \mathbb{R}_{+} \times \mathbb{R} \times \mathscr{P}\left(\mathbb{R}_{+}\right) \rightarrow \mathbb{R}_{+}$, $\Gamma: \mathbb{R} \rightarrow \mathscr{P}\left(\mathbb{R}_{+}\right)$. This means for any living particle α at time $t \geq 0$ with position ξ_{t}^{α}, the probability that she dies in the time interval $[t, t+\Delta t)$ is

$$
n \widetilde{\sigma}_{\delta}^{2}\left(t, \xi_{t}^{\alpha}, \mathbb{P}_{Y_{t}^{\delta, n}}\right) \Delta t+o(\Delta t)
$$

2. Mean field superprocess

With the above branching mechanism when $n \rightarrow \infty$ and when $\delta \rightarrow 0$, the process

$$
X_{t}^{\delta, n}=\frac{1}{n} \sum_{\alpha \sim \sim_{n} t} \delta_{\xi_{t}^{\alpha}},
$$

would converge to the following SPDE

$$
\begin{equation*}
\frac{\partial}{\partial t} X_{t}(x)=\frac{1}{2} \Delta X_{t}(x)+\sigma\left(t, x, \mathbb{P}_{X_{t}(x)}\right) \sqrt{X_{t}(x)} \dot{W}(t, x) \tag{2}
\end{equation*}
$$

where $\mathbb{P}_{X_{t}(x)}$ is the probability law of the real valued random variable $X_{t}(x)$.

We shall focus on the existence, uniqueness and regularity of the solution to equation (2). The first difficulty that we encounter is that there exists no readily-applicable, fully-developed theory on the Fokker-Planck-Kolmogorov equation associated with (2). So, we cannot follow the approach used in finite dimensional case to study the existence and uniqueness of solutions to the associated Fokker-Planck-Kolmogorov equation first, and then to solve the mean field equation.

Buckdahn, R., Li, J., Peng, S., and Rainer, C.
Mean-field stochastic differential equations and associated PDEs.
Ann. Probab. 45, 2 (2017), 824-878.
Hu, Y.; Kouritzin, M.; Zheng, Jiayu
Nonlinear McKean-Vlasov diffusions under the weak Hörmander condition with quantile-dependent coefficients

To appear in Potential Analysis

Nevertheless, the anticipation of solutions to (2) is well justified. Due to the appearance of the branching character (the $\sqrt{X_{t}(x)}$ factor in front of the noise), it is natural to use a branching particle system to approximate this equation. Assuming that such approximation is done and some high-density limit exists, one presumably obtains that every limit point $X=X_{t}(d x, \omega)$ is an $\mathcal{M}_{F}(\mathbb{R})$-valued Markov process.

Let $\mathcal{M}_{F}(\mathbb{R})$ be the set of all finite measures on \mathbb{R}, let $\mathscr{P}\left(\mathbb{R}_{+}\right)$be the collection of all Borel probability measures on \mathbb{R}_{+}equipped with the weak topology, namely, $\lim _{n \rightarrow \infty} \mathbb{P}_{n}=\mathbb{P}$ in $\mathscr{P}\left(\mathbb{R}_{+}\right)$, denoted by $\mathbb{P}_{n} \Rightarrow \mathbb{P}$, if

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}_{+}} \phi(x) \mathbb{P}_{n}(d x)=\int_{\mathbb{R}_{+}} \phi(x) \mathbb{P}(d x)
$$

for all $\phi \in \mathcal{S}(\mathbb{R})$. We write $\mathcal{M}\left(\mathbb{R} ; \mathscr{P}\left(\mathbb{R}_{+}\right)\right)$for the collections of measurable functions on \mathbb{R} with values in $\mathscr{P}\left(\mathbb{R}_{+}\right)$.
Hypothesis (Hypothesis 1)
(i) σ^{2} is positive and bounded, that is, there exists a positive constant K_{0} such that

$$
0<\sigma^{2}(t, x, \mu) \leq K_{0}
$$

for all $(t, x, \mu) \in \mathbb{R}_{+} \times \mathbb{R} \times \mathscr{P}\left(\mathbb{R}_{+}\right)$.
(ii) σ^{2} is continuous with respect to all the arguments, in the sense that for any $\left(t_{n}, x_{n}\right) \rightarrow(t, x) \in \mathbb{R}_{+} \times \mathbb{R}$ and $\mu_{n} \Rightarrow \mu$ in $\mathscr{P}\left(\mathbb{R}_{+}\right)$, it follows that

$$
\lim _{n \rightarrow \infty} \sigma^{2}\left(t_{n}, x_{n}, \mu_{n}\right)=\sigma^{2}(t, x, \mu)
$$

Hypothesis (Hypothesis 2)
For any $(t, x, \mu) \in[0, T] \times \mathbb{R} \times \mathscr{P}\left(\mathbb{R}_{+}\right)$,

$$
\sigma^{2}(t, x, \mu)=f\left(t, x, \mathbb{E}\left[X_{\mu}\right], \mathbb{E}\left[X_{\mu}^{2}\right], \ldots, \mathbb{E}\left[X_{\mu}^{N}\right]\right),
$$

where $N \in \mathbb{N}, X_{\mu}$ is a random variable with distribution μ and f is a continuous function on $[0, T] \times \mathbb{R} \times \mathbb{R}_{+}^{N}$ that is positive and bounded. Moreover, f is assumed to be differentiable in the last N spatial arguments with bounded derivatives.

For any $\gamma \in \mathbb{R}$, the Hilbert space \mathcal{H}_{γ} is a collection of real sequences, namely, $x=\left(x_{i}\right)_{i \in \mathbb{N}}$ with $x_{i} \in \mathbb{R}$ for all $i \in \mathbb{N}$, equipped with inner product

$$
\begin{equation*}
\langle x, y\rangle_{\mathcal{H}_{\gamma}}=\sum_{n=1}^{\infty}(n!)^{-2 \gamma} x_{n} y_{n}, \tag{3}
\end{equation*}
$$

for all $x=\left(x_{i}\right)_{i \in \mathbb{N}}$ and $y=\left(y_{i}\right)_{i \in \mathbb{N}}$.
Hypothesis (Hypothesis 3)
Let $\mathcal{H}=\mathcal{H}_{\gamma}$ with $\gamma>\frac{3}{2}$, and let
$\mathcal{H}_{+}=\left\{x=\left(x_{i}\right)_{i \in \mathbb{N}} \in \mathcal{H}: x_{i} \geq 0, \forall i \geq 1\right\}$. Then, σ can be represented as $\sigma(t, x, \mu)^{2}=f\left(t, x, \mathbb{E}\left[X_{\mu}\right], \mathbb{E}\left[X_{\mu}^{2}\right], \ldots\right)$ for some measurable function f on $[0, T] \times \mathbb{R} \times \mathcal{H}_{+}$that is positive and bounded. Moreover, f is Lipschitz in $y \in \mathcal{H}_{+}$with uniform constant in $(t, x) \in[0, T] \times \mathbb{R}$, namely,

$$
\sup _{(t, x) \in[0, T] \times \mathbb{R}}\left|f\left(t, x, y_{1}\right)-f\left(t, x, y_{2}\right)\right| \leq L\left\|y_{1}-y_{2}\right\|_{\mathcal{H}},
$$

for all $y_{1}, y_{2} \in \mathcal{H}_{+}$with some constant $L>0$.

Next, we state the last hypothesis about the initial condition X_{0}. Hypothesis (Hypothesis 4)
$X_{0} \in \mathcal{M}_{F}(\mathbb{R})$ has a bounded density, still denoted by X_{0}, such that $X_{0} \in H_{1,2}(\mathbb{R})$, namely, $\left\|X_{0}\right\|_{1,2}=\left\|X_{0}\right\|_{2}+\left\|\nabla X_{0}\right\|_{2}<\infty$.

Now, we are ready to state the main results
Theorem (Hu-Kouritzin-Xia-Zheng)
Assume X_{0} satisfying Hypothesis 4. Then, equation (2) with initial condition X_{0} has a weak solution on any time interval $[0, T]$ under one of Hypotheses 1, 2 and 3. Additionally, the solution is unique in distribution under either Hypothesis 2 or 3.

3. Moment formula

$$
\begin{aligned}
x_{t}(x)= & \int_{\mathbb{R}} d y p_{t}(x-y) x_{0}(y) \\
& +\int_{0}^{t} \int_{\mathbb{R}} p_{t-s}(x-y) \sigma\left(s, y, \mathbb{P}_{X_{s}(y)}\right) \sqrt{X_{s}(y)} W(d s, d y) .
\end{aligned}
$$

Due to the singularity of $p_{t-s}(x-y)$ when $t=s, X_{t}(x)$ is not a semimartingale in t. We introduce an auxiliary process $Y^{t}=\left\{Y_{s}^{t}(x): 0 \leq s \leq t, x \in \mathbb{R}\right\}$, where

$$
\begin{align*}
Y_{s}^{t}(x)= & \int_{\mathbb{R}} d y p_{t}(x-y) X_{0}(y) \\
& +\int_{0}^{s} \int_{\mathbb{R}} p_{t-r}(x-y) \sigma\left(r, y, \mathbb{P}_{X_{r}(y)}\right) \sqrt{X_{r}(y)} W(d r, d y) . \tag{4}
\end{align*}
$$

Theorem (Hu-Kouritzin-Xia-Zheng)

Suppose that $X_{0} \in \mathcal{M}_{F}(\mathbb{R})$ satisfies Hypothesis 4. Let $n \in \mathbb{N}$. Then, for any $(t, x) \in[0, T] \times \mathbb{R}$, the following equation holds:

$$
\begin{align*}
\mathbb{E}\left[X_{t}(x)^{n}\right]= & \sum_{n^{\prime}=0}^{n-1} \sum_{(\alpha, \beta, \tau) \in \mathcal{J}_{n, n^{\prime}}} \prod_{i=1}^{n}\left(\int_{\mathbb{R}} d z p_{t}(x-z) X_{0}(z)\right)^{1-\alpha_{i}} \\
& \times \int_{\mathbb{T}_{n^{\prime}}^{t}} d \mathbf{s}_{n^{\prime}} \int_{\mathbb{R}^{n^{\prime}}} d z_{n^{\prime}} \prod_{i=1}^{n^{\prime}}\left(\int_{\mathbb{R}} d z p_{s_{i}}\left(z_{i}-z\right) X_{0}(z)\right)^{1-\beta_{i}} \\
& \prod_{i=1}^{|\alpha|} p\left(t-s_{\tau(i)}, x-z_{\tau(i)}\right) \\
& \times \prod_{i=|\alpha|+1}^{2 n^{\prime}} p\left(s_{\iota_{\beta}}(i-|\alpha|)-s_{\tau(i)}, z_{\iota_{\beta}(i-|\alpha|)}-z_{\tau(i)}\right) \\
& \times \prod_{i=1}^{n^{\prime}} \sigma\left(s_{i}, z_{i}, \mathbb{P}_{X_{s_{i}}\left(z_{i}\right)}\right)^{2} \tag{5}
\end{align*}
$$

Theorem (continued)
where the set $\mathcal{J}_{n, n^{\prime}}$ of triples (α, β, τ) are some index set which is complicated to describe here.

$$
\begin{equation*}
\mathbb{T}_{n^{\prime}}^{t}=\left\{\mathbf{s}_{n^{\prime}}=\left(s_{1}, \ldots, s_{n^{\prime}}\right) \in[0, T]^{n^{\prime}}: 0<s_{n^{\prime}}<s_{n^{\prime}-1}<\cdots<s_{1}<t\right\} \tag{6}
\end{equation*}
$$

and $p(t, x)=p_{t}(x)$ to avoid long sub-indexes.

Proposition

Assume that $X_{0} \in \mathcal{M}_{F}(\mathbb{R})$ satisfies Hypothesis 4 and let $X=\left\{X_{t}(x):(t, x) \in[0, T] \times \mathbb{R}\right\}$ be a solution to equation (2). Then,

$$
\sup _{(t, x) \in[0, T] \times \mathbb{R}} \mathbb{E}\left[X_{t}(x)^{n}\right] \leq c_{1} c_{2}^{n}(n!)^{\frac{3}{2}},
$$

with constants $c_{1}, c_{2}>0$ independent of n.
Use this bound we can prove the weak uniqueness for equation (2).

4. Moment bounds for super Brownian motion

Return to the classical super Brownian motion:

$$
\begin{equation*}
\frac{\partial}{\partial t} u_{t}(x)=\frac{1}{2} \Delta u_{t}(x)+\sqrt{u_{t}(x)} \dot{W}(t, x), \tag{8}
\end{equation*}
$$

where \dot{W} denotes the space-time white noise on $\mathbb{R}_{+} \times \mathbb{R}$.

Hypothesis (Hypothesis 5)

u_{0} is a positive function on \mathbb{R} that is two-sided bounded by positive constants, namely,

$$
K_{1} \leq u_{0}(x) \leq K_{2},
$$

for all $x \in \mathbb{R}$ with $K_{2} \geq K_{1}>0$.
Hypothesis (Hypothesis 6)
u_{0} is a finite measure on \mathbb{R} such that for any $x \in \mathbb{R}$,

$$
\begin{equation*}
\lim _{t \uparrow \infty} t^{\gamma} \int_{\mathbb{R}} p_{t}(x-z) u_{0}(d z)=L \in(0, \infty) \tag{9}
\end{equation*}
$$

with some $\gamma \in(0,1)$, where $p_{t}(x)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}}$ denotes the heat kernel.

Theorem (Hu-Wang-Xia-Zheng)

Let $u=\left\{u_{t}(x):(t, x) \in \mathbb{R}_{+} \times \mathbb{R}\right\}$ be the solution to (8), and let n be any positive integer. Then, under Hypothesis 5,

$$
\begin{equation*}
K_{*}^{n}\left(1+n!t^{\frac{1}{2}(n-1)}\right) \leq \mathbb{E}\left(u_{t}(x)^{n}\right) \leq\left(K^{*}\right)^{n}\left(1+n!t^{\frac{1}{2}(n-1)}\right), \tag{10}
\end{equation*}
$$

for all $(t, x) \in \mathbb{R}_{+} \times \mathbb{R}$. Instead, under Hypothesis 6,

$$
\begin{equation*}
K_{*}^{n} n!t^{\frac{n-1}{2}-\gamma} \leq \mathbb{E}\left(u_{t}(x)^{n}\right) \leq\left(K^{*}\right)^{n} n!t^{\frac{n-1}{2}-\gamma}, \tag{11}
\end{equation*}
$$

for all $(t, x) \in\left[n C_{x} \vee 1, \infty\right) \times \mathbb{R}$ where $C_{x}>0$, depending on x, is such that

$$
\frac{1}{2} L \leq t^{\gamma} \int_{\mathbb{R}} p_{t}(x-z) u_{0}(d z) \leq 2 L
$$

for all $t>C_{x}$. Especially, the second inequality in (11) holds for all $(t, x) \in\left[C_{x}, \infty\right) \times \mathbb{R}$. Here, K_{*} and K^{*} are positive constants independent of n, t and x.

5. Limit of branching particles

(i) $\left(X^{\delta}, Y^{\delta}\right)=\left(X^{\delta},\left\langle X^{\delta}, p_{\delta}(X-\cdot)\right\rangle\right)$ is a solution to following martingale problem:

$$
\begin{equation*}
M_{t}(\phi)=\left\langle X_{t}, \phi\right\rangle-\left\langle X_{0}, \phi\right\rangle-\frac{1}{2} \int_{0}^{t}\left\langle X_{s}, \phi\right\rangle d s \tag{12}
\end{equation*}
$$

is a square integrable martingale with quadratic variation

$$
\begin{equation*}
\langle M(\phi)\rangle_{t}=\int_{0}^{t} \int_{\mathbb{R}} \sigma\left(s, x, \mathbb{P}_{X_{s}(x)}\right)^{2} \phi(x)^{2} X_{s}(d x) d s \tag{13}
\end{equation*}
$$

(2) If $\left(X^{\delta}, Y^{\delta}\right)=\left(X^{\delta},\left\langle X^{\delta}, p_{\delta}(X-\cdot)\right\rangle\right)$ is a solution to martingale problem MP (12) and (13) with initial condition $X_{0} \in \mathcal{M}_{F}(\mathbb{R})$. Then, for every $t \in \mathbb{R}_{+}, X_{t}^{\delta}$ has a Lebesgue density. Moreover, identifying $X_{t}^{\delta}(x)$ as the density of X_{t}^{δ}, the pair $\left(X^{\delta}, Y^{\delta}\right)$ satisfies equation (14) for some space-time white noise W.

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} X_{t}^{\delta}(x)=\frac{1}{2} \Delta X_{t}^{\delta}(x)+\widetilde{\sigma}_{\delta}\left(t, x, \mathbb{P}_{Y_{t}^{\delta}}\right) \sqrt{X_{t}^{\delta}(x)} \dot{W}(t, x) \tag{14}\\
Y_{t}^{\delta}(x)=\int_{\mathbb{R}} p_{\delta}(x-y) X_{t}^{\delta}(d y)
\end{array}\right.
$$

tightness criteria

A family \mathcal{P} of probability measures on $C([0, T] \times \mathbb{R} ; \mathbb{R})$ is precompact if
(i) $\lim _{A \uparrow \infty} \sup _{\mathbb{P} \in \mathcal{P}} \mathbb{P}\left(\left|X_{t}(0)\right|>A\right)=0$.
(ii) For each $x \in \mathbb{R}$ and $\rho>0$,

$$
\limsup _{\epsilon \downarrow 0} \sup _{\mathbb{P} \in \mathcal{P}}\left(\sup _{0 \leq s \leq t \leq T,|t-s|<\epsilon}\left|X_{t}(x)-X_{s}(x)\right|>\rho\right)=0 .
$$

(iii) For every $R>0$ and $\rho>0$,

$$
\lim _{\epsilon \downarrow 0} \sup _{\mathbb{P} \in \mathcal{P}} \mathbb{P}\left(\sup _{0 \leq t \leq T,-R \leq x \leq y \leq R,|x-y|<\epsilon}\left|X_{t}(x)-X_{t}(y)\right|>\rho\right)=0 .
$$

Proposition

Assume Hypothesis. Then, $\left\{Y^{\delta}\right\}_{\delta>0}$ is a tight sequence in $C([0, T] \times \mathbb{R} ; \mathbb{R})$.

We only sketch the proof of the theorem under Hypothesis 1. For other situations under Hypothesis 2 or 3, we can modify the proof following the idea. Let $\left(X^{\delta}, Y^{\delta}\right)$ be a solution to (14). Then, there exists a sequence $\delta_{n} \downarrow$ such that $Y^{\delta_{n}}$ is convergent in distribution in $C([0, T] \times \mathbb{R} ; \mathbb{R})$ to some random field Y. By the typical tightness argument, one can show that $\left\{X^{\delta_{n}}: n \geq 1\right\}$ is tight in $D\left([0, T] ; \mathcal{M}_{F}(\mathbb{R})\right)$. Therefore, by taking subsequence of $\left\{X^{\delta_{n}}\right\}$, we can assume it converges in distribution to some $\mathcal{M}_{F}(\mathbb{R})$-valued process X. By the Skorohod representation theorem, we can also assume this convergence is almost surely.

In the next step, we show that (X, Y) is a weak solution to the following equation

$$
\frac{\partial}{\partial t} X_{t}(x)=\frac{1}{2} \Delta X_{t}(x)+\sigma\left(t, x, \mathbb{P}_{Y_{t}(x)}\right) \sqrt{X_{t}(x)} \dot{W}(t, x)
$$

Equivalently, it suffices to show that X_{t} is a solution to the following martingale problem), for any $\phi \in \mathcal{S}(\mathbb{R})$,

$$
\begin{equation*}
M_{t}(\phi)=X_{t}(\phi)-X_{0}(\phi)-\frac{1}{2} \int_{0}^{t} X_{s}(\Delta \phi) d s \tag{15}
\end{equation*}
$$

is a continuous square integrable martingale, with quadratic variation

$$
\begin{equation*}
\langle M(\phi)\rangle_{t}=\int_{0}^{t} \sigma\left(s, x, \mathbb{P}_{Y_{s}(x)}\right)^{2} \phi(x)^{2} X_{s}(d x) d s \tag{16}
\end{equation*}
$$

Notice that, using a elementary theorem, we have

$$
\begin{aligned}
\langle M(\phi)\rangle_{t} & =\lim _{n \rightarrow \infty}\left\langle M^{\delta_{n}}(\phi)\right\rangle_{t} \\
& =\lim _{n \rightarrow \infty} \int_{0}^{t} d s \int_{\mathbb{R}} X_{s}^{\delta_{n}}(d x)\left(\int_{\mathbb{R}} d y p_{\delta_{n}}(x-y) \sigma\left(s, y, \mathbb{P}_{Y_{s}(y)}\right)\right)^{2} \phi(x)^{2} .
\end{aligned}
$$

To verify the limit, we compute the following quantity,

$$
\begin{aligned}
& \mid \int_{0}^{t} d s \int_{\mathbb{R}} X_{s}^{\delta_{n}}(d x)\left(\int_{\mathbb{R}} d y p_{\delta_{n}}(x-y) \sigma\left(s, y, \mathbb{P}_{Y_{s}^{\delta_{n}}(y)}\right)\right)^{2} \phi(x)^{2} \\
& -\int_{0}^{t} d s \int_{\mathbb{R}} \sigma\left(s, x, \mathbb{P}_{Y_{s}(x)}\right)^{2} \phi(x)^{2} X_{s}(d x) \mid \leq I_{1}+I_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
I_{1}=\mid \int_{0}^{t} d s \int_{\mathbb{R}} & {\left[\left(\int_{\mathbb{R}} d y p_{\delta_{n}}(x-y) \sigma\left(s, y, \mathbb{P}_{Y_{s}^{\delta_{n}}(y)}\right)\right)^{2}\right.} \\
- & \left.\sigma\left(s, x, \mathbb{P}_{Y_{s}(x)}\right)^{2}\right] \phi(x)^{2} X_{s}^{\delta_{n}}(d x) \mid
\end{aligned}
$$

and

$$
I_{2}=\left|\int_{0}^{t} d s \int_{\mathbb{R}} d x \sigma\left(s, x, \mathbb{P}_{Y_{s}(x)}\right)^{2} \phi(x)^{2}\left(X_{s}^{\delta_{n}}(d x)-X_{s}(d x)\right)\right|
$$

It is clear that $I_{2} \rightarrow 0$ as $n \rightarrow \infty$ because $X^{\delta_{n}} \rightarrow X$ in $D\left([0, T] ; \mathcal{M}_{F}(\mathbb{R})\right)$. On the other hand, notice that $X_{s}^{\delta_{n}}$ has a density almost surely. Thus, by Cauchy-Schwarz's inequality

$$
\begin{aligned}
I_{1} \leq & \left(\int_{\mathbb{R}} d x\left[\left(\int_{\mathbb{R}} d y p_{\delta_{n}}(x-y) \sigma\left(s, y, \mathbb{P}_{Y_{s}^{\delta_{n}}(y)}\right)\right)^{2}-\sigma\left(s, x, \mathbb{P}_{Y_{s}(x)}\right)^{2}\right]^{2} \phi(x)^{2}\right)^{\frac{1}{2}} \\
& \times \int_{0}^{t}\left(\int_{\mathbb{R}} \phi(x)^{2} X_{s}^{\delta_{n}}(x)^{2} d x\right)^{\frac{1}{2}}:=I_{11} \times I_{12} .
\end{aligned}
$$

By dominated convergence theorem, we know that $I_{11} \rightarrow 0$ as $n \rightarrow \infty$. Furthermore, one can show that $\mathbb{E}\left[1_{12}\right]$ is uniformly bounded in n. As a consequence, it follows by Fatou's lemma that

$$
\mathbb{E}\left[\liminf _{n \rightarrow \infty} I_{1}\right] \leq \lim _{n \rightarrow \infty} \mathbb{E}\left[I_{1}\right]=0 .
$$

This implies that $\lim \inf _{n \rightarrow \infty} I_{1}=0$ almost surely. That is enough to prove (16) because we can take subsequence so that the above $\lim _{\inf _{n \rightarrow \infty}}$ can be replaced by $\lim _{n \rightarrow \infty}$.

Finally, we complete the proof of this theorem by showing that for any $t \in[0, T]$, the distribution of X_{t} and Y_{t} coincide. Indeed, for any $\phi \in \mathcal{S}(\mathbb{R})$, we can show that
$\mathbb{E}\left[\left\langle X_{t}, \phi\right\rangle\right]-\mathbb{E}\left[\left\langle Y_{t}, \phi\right\rangle\right] \leq\left|\mathbb{E}\left[\left\langle X_{t}, \phi\right\rangle\right]-\mathbb{E}\left[\left\langle X_{t}^{\delta_{n}}, \phi\right\rangle\right]\right|+\left|\mathbb{E}\left[\left\langle Y_{t}, \phi\right\rangle\right]-\mathbb{E}\left[\left\langle Y_{t}^{\delta_{n}}, \phi\right\rangle\right]\right|$

$$
+\left|\mathbb{E}\left[\left\langle X_{t}^{\delta_{n}}, \phi\right\rangle\right]-\mathbb{E}\left[\left\langle Y_{t}^{\delta_{n}}, \phi\right\rangle\right]\right| .
$$

It suffices to show the convergence to 0 of the last term. Recall that $Y_{t}^{\delta_{n}}(x)=\left\langle X_{t}^{\delta_{n}}, p_{\delta}(x-\cdot)\right\rangle$ for all $(t, x) \in[0, T] \times \mathbb{R}$. Thus, we can write

$$
\begin{aligned}
\left|\mathbb{E}\left[\left\langle X_{t}^{\delta_{n}}, \phi\right\rangle\right]-\mathbb{E}\left[\left\langle Y_{t}^{\delta_{n}}, \phi\right\rangle\right]\right| & =\mathbb{E}\left[\left|\int_{\mathbb{R}} d x \int_{\mathbb{R}} d y p_{\delta_{n}}(x-y)(\phi(x)-\phi(y)) X_{t}(d x)\right|\right] \\
& \leq \sup _{x \in \mathbb{R}}\left|\int_{\mathbb{R}} d y p_{\delta_{n}}(x-y)(\phi(x)-\phi(y))\right| \mathbb{E}\left[\left\langle X_{t}, \mathbf{1}\right\rangle\right] .
\end{aligned}
$$

Notice that

$$
\begin{aligned}
& \left|\int_{\mathbb{R}} d y p_{\delta_{n}}(x-y)(\phi(x)-\phi(y))\right| \\
\leq & \int_{|x-y| \leq \delta_{n}^{\frac{1}{3}}} d y p_{\delta_{n}}(x-y)|\phi(x)-\phi(y)|+2\|\phi\|_{\infty} \int_{|x-y|>\delta_{n}^{\frac{1}{3}}} d y p_{\delta_{n}}(x-y) \\
\leq & \|\phi\|_{1, \infty} \delta_{n}^{\frac{1}{3}} \int_{|z| \leq \delta_{n}^{\frac{1}{3}}} d z p_{\delta_{n}}(z)+2\|\phi\|_{\infty} \int_{|z|>\delta_{n}^{-\frac{1}{6}}} d z \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} \rightarrow 0,
\end{aligned}
$$

as $n \rightarrow \infty$. As a consequence, we have $\mathbb{E}\left[\left\langle X_{t}, \phi\right\rangle\right]=\mathbb{E}\left[\left\langle Y_{t}, \phi\right\rangle\right]$ for all $\phi \in \mathcal{S}(\mathbb{R})$. The proof of the existence part of the theorem is complete.

THANKS

